

MATERIALS & SAFETY - R&D

TR 31318

page 1 of 18

FORM C TYPE TEST VERIFICATION REPORT

Type Approval and Manufacturer declaration of compliance with the requirements of G98/NI.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA).

If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA **Type Test Verification Report** Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the Product ID), and this form does not need to be submitted.

Where the **Micro-generator** is not registered with the ENA **Type Test Verification Report** Register this form needs to be completed and provided to NIE Networks, to confirm that the **Micro-generator** has been tested to satisfy the requirements of this EREC G98/NI.

Manufacturer's reference number		Fronius Symo GEN24				
Micro-gener	ator technol	ogy	transformerless			
Manufacture	er name		Froni	us Internationa	al GmbH	
Address				ter Fronius Sti Wels-Thalheir		
Tel	+43-724	2-241-0		+43-7242-241-224		
E:mail	pv@fron	ius.com		Web site	www.fronius.com	
			Connection Option			
Registered (Canacity		kW single phase, single, split or three phase system			
Registered Capacity, use separate sheet if more than one connection option.		3	kW three phase			
			kW two phases in three phase system			
		kW two phases split phase system				
Manufacture	r Type Test	declaration - L certif	v that	all products su	ipplied by the company with the above	

Manufacturer Type Test declaration. - I certify that all products supplied by the company with the above **Type Tested** reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of EREC G98/NI.

Signed	Gonto Fibrido St. L. A 3600 Web Abarretm Tel: +43/(0) 72 42/(341-0, Fax: 47 8 25	On behalf of	Fronius International GmbH
--------	---	--------------	----------------------------

Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

@BCL@28089884.doc

MATERIALS & SAFETY - R&D

TR 31318

page 2 of 18

Operating Range: This test should be carried out as specified in EN 50438 D.3.1.

Active Power shall be recorded every second. The tests will verify that the **Micro-generator** can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV **Micro-generator** the PV primary source may be replaced by a **DC** source.

In case of a full converter **Micro-generator** (e.g. wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a **DC** source.

In case of a DFIG **Micro-generator** the mechanical drive system may be replaced by a test bench motor.

Test 1

Voltage = 85% of nominal (195.5 V)

Frequency = 47.5 Hz

Power factor = 1

Period of test 90 minutes

Test 2

Voltage = 110% of nominal (253 V).

Frequency = 51.5 Hz

Power factor = 1

Period of test 90 minutes

Test 3

Voltage = 110% of nominal (253 V).

Frequency = 52.0 Hz

Power factor = 1

Period of test 15 minutes

Remark: During the tests 1, 2 and 3 the unit does not disconnect, tests have been passed.

MATERIALS & SAFETY - R&D

TR 31318

page 3 of 18

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

(Syricinor	Micro-generat	or tested to BS EN 61000-3	3-2 Phase 1
Micro-ger	nerator rating per phase (rpp	o) 1,023 kV	V
Harmonic	At 45-55% of Registered Capacity	100% of Registere Capacity	ed
	Measured Value MV in Amps	Measured Value MV in Amps	Limit in BS EN 61000- 3-2 in Amps Higher limit for odd harmonics 21 and above
2	0.001	0.002	1.080
3	0.002	0.001	2.300
4	0.002	0.002	0.430
5	0.002	0.002	1.140
6	0.001	0.001	0.300
7	0.002	0.003	0.770
8	0.001	0.001	0.230
9	0.001	0.002	0.400
10	0.001	0.001	0.184
11	0.010	0.020	0.330
12	0.001	0.001	0.153
13	0.005	0.015	0.210
14	0.001	0.001	0.131
15	0.001	0.002	0.150
16	0.001	0.001	0.115
17	0.008	0.008	0.132
18	0.001	0.001	0.102
19	0.010	0.006	0.118

@BCL@28089884.doc

MATERIA	LS & SAFETY -	- R&D IR 31318	3	page 4 of 18
20	0.001	0.001		
20			0.092	
	0.001	0.001		0.160
21			0.107	

MATERIALS & SAFETY - R&D

TR 31318

page 5 of 18

22	0.001	0.001		
			0.084	
23	0.009	0.005	0.098	0.147
24	0.001	0.001	0.077	
25	0.006	0.005	0.090	0.135
26	0.001	0.001	0.071	
27	0.001	0.001	0.083	0.124
28	0.001	0.001	0.066	
29	0.004	0.008	0.078	0.117
30	0.001	0.001	0.061	
31	0.005	0.008	0.073	0.109
32	0.001	0.001	0.058	
33	0.001	0.001	0.068	0.102
34	0.001	0.001	0.054	
35	0.006	0.007	0.064	0.096
36	0.001	0.002	0.051	
37	0.006	0.007	0.061	0.091
38	0.002	0.003	0.048	
39	0.001	0.001	0.058	0.087
40	0.001	0.001	0.046	
Note th	og bigbor limite f	for odd harmonics 21 and a		, allowable

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

MATERIALS & SAFETY - R&D

TR 31318

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of

page 6 of 18

energy at two power levels a) between 45 and 55% and b) at 100% of Registered Capacity. The test requirements are specified in Annex A1 A.1.3.1 (Inverter connected) or Annex A2 A.2.3.1 (Synchronous). Micro-generator tested to BS EN 61000-3-2 Phase 2 Micro-generator rating per 1,005 kW phase (rpp) Harmonic At 45-55% of 100% of Registered Capacity Registered Capacity Measured Measured Higher limit Limit Value MV Value MV in BS for odd in Amps in Amps ΕN harmonics 61000-21 and 3-2 in above **Amps** 0.001 0.001 1.080 2 0.004 0.004 2.300 3 0.001 0.001 0.430 4 0.002 0.002 1.140 5 0.001 0.001 0.300 6 0.002 0.002 0.770 7 0.001 0.230 0.001 8 0.001 0.002 0.400 9 0.001 0.001 0.184 10 0.009 0.020 0.330 11 0.001 0.001 0.153 12 0.005 0.015 0.210 13 0.001 0.001 0.131 14 0.150 0.001 0.001 15 0.001 0.001 0.115 16 0.008 0.132 800.0 17 0.001 0.102 0.001 18 0.009 0.005 0.118 19 0.001 0.001 0.092 20

MATERIALS	& SAFETY - R	&D	TR 31318		page 7 of 18
21	0.001		0.001	0.107	0.160

MATERIALS & SAFETY - R&D

TR 31318

page 8 of 18

22	0.001	0.001	0.004	
	0.008	0.004	0.084	0.147
23			0.098	0.147
24	0.001	0.001	0.077	
25	0.005	0.006	0.090	0.135
26	0.001	0.001	0.071	
27	0.001	0.001	0.083	0.124
28	0.001	0.001	0.066	
29	0.004	0.008	0.078	0.117
30	0.001	0.001	0.061	
31	0.005	0.007	0.073	0.109
32	0.001	0.001	0.058	
33	0.001	0.001	0.068	0.102
34	0.001	0.001	0.054	
35	0.006	0.007	0.064	0.096
36	0.001	0.002	0.051	
37	0.005	0.006	0.061	0.091
38	0.002	0.002	0.048	
39	0.001	0.001	0.058	0.087
40	0.001	0.001	0.046	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

MATERIALS & SAFETY - R&D

TR 31318

page 9 of 18

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

(Syricinor	Micro-genera	tor tested to BS EN 61000-3-2 F	Phase 3	
Micro-ger	nerator rating per phase (rpp	o) 1,008 kW		
Harmonic	At 45-55% of Registered Capacity	1 100% of Registered Capacity		
	Measured Value MV in Amps	Measured Value MV in Amps	Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0.00	0.002	1.080	
3	0.00	0.003	2.300	
4	0.00	0.002	0.430	
5	0.00	0.001	1.140	
6	0.00	0.001	0.300	
7	0.00	0.003	0.770	
8	0.00	0.001	0.230	
9	0.00	0.001	0.400	
10	0.00	0.001	0.184	
11	0.01	0.019	0.330	
12	0.00	0.001	0.153	
13	0.00	0.015	0.210	
14	0.00	0.001	0.131	
15	0.00	0.001	0.150	
16	0.00	0.001	0.115	
17	0.01	0.008	0.132	
18	0.00	0.001	0.102	
19	0.01	0.005	0.118	

@BCL@28089884.doc

MATERIAL	LS & SAFETY -	R&D TR	31318		page 10 of 18
20	0.00	0.00	01		
				0.092	
	0.00	0.00	01		0.160
21				0.107	

MATERIALS & SAFETY - R&D

TR 31318

page 11 of 18

22	0.00	0.001	0.004	
	0.01	0.005	0.084	0.147
23			0.098	0.147
24	0.00	0.001	0.077	
25	0.00	0.006	0.090	0.135
26	0.00	0.001	0.071	
27	0.00	0.001	0.083	0.124
28	0.00	0.001	0.066	
29	0.00	0.008	0.078	0.117
30	0.00	0.001	0.061	
31	0.01	0.008	0.073	0.109
32	0.00	0.002	0.058	
33	0.00	0.001	0.068	0.102
34	0.00	0.001	0.054	
35	0.01	0.007	0.064	0.096
36	0.00	0.002	0.051	
37	0.01	0.006	0.061	0.091
38	0.00	0.003	0.048	
39	0.00	0.001	0.058	0.087
40	0.00	0.001	0.046	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

MATERIALS & SAFETY - R&D

TR 31318

page 12 of 18

Power Quality - Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98/NI Annex A1 A.1.3.3 (Inverter connected) or Annex A2 A.2.3.3 (Synchronous) Starting Stopping Running d_{max} $\mathsf{d}_{\scriptscriptstyle{(\underline{t})}}$ $d_{\rm c}$ d_{max} $d_{(t)}$ P_{st} P₊2 hours ď Measured 0 0 0.47 0.013 0.074 0.5 Values at test impedance Normalised 0 0 0.5 0.47 0.013 0.074 to standard impedance Normalised to required maximum impedance Limits set 4% 3.3% 3.3% 4% 3.3% 3.3% 1.0 0.65 under BS EN 61000-3-11

0.000 0								
Test Impedance	R	С).24	Ω	Х	0.15	Ω	
Standard Impedance	R	C).24 *	Ω	Х	0.15 *	Ω	
		C).4^			0.25^		
Maximum Impedance	R	-		Ω	X	-	Ω	

^{*} Applies to three phase and split single phase Micro-generators.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0.98 or above.

Normalised value = Measured value*reference source resistance/measured source resistance at test point.

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is 0.4 Ω .

Two phase units in a split phase system reference source resistance is 0.24 Ω .

Three phase units reference source resistance is 0.24Ω .

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to conform to the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below.

Test start	14:59	Test end	16:59	22.12.2020
Test location		aboratories, Fronius Internationa is Str 1, A-4600 Wels-Thalheim,	•	

[^] Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system.

MATERIALS & SAFETY - R&D

TR 31318

page 13 of 18

Power quality – DC injection: This test should be carried out in accordance with EN 50438 Annex D.3.10					
Test power level	20%	50%	75%	100%	
Recorded value in Amps	0.0064	0.0024	0.0039	0.0048	
as % of rated AC current	0.03625	0.03625	0.03625	0.03625	
Limit	0.25%	0.25%	0.25%	0.25%	

Power Quality – Power factor : This test shall be carried out in accordance with EN 50538 Annex D.3.4.1 but with nominal voltage -6% and +10%. Voltage to be maintained within ±1.5% of the stated level during the test.					
	216.2 V	230 V	253 V		
20% of Registered Capacity	1.00	1.00	1.00		
50% of Registered Capacity	1.00	1.00	1.00		
75% of Registered Capacity	1.00	1.00	1.00		
100% of Registered Capacity	1.00	1.00	1.00		
Limit leading	>0.95	>0.95	>0.95		
Limit lagging	>0.98	>0.98	>0.98		

@BCL@28089884.doc

MATERIALS & SAFETY - R&D

TR 31318

page 14 of 18

Protection – Frequency tests: These tests should be carried out in accordance with EN 50438 Annex D.2.4 and the notes in EREC G98/NI Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous)

Function	Setting		Trip test		"No trip tests"	
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip
U/F	48.0 Hz	0.5 s	48.000Hz	0.541s	48.2 Hz 25 s	Confirmed
					47.8 Hz 0.45 s	Confirmed
O/F stage 1	52Hz	1.0 s	52.000Hz	1.048s	51.8 Hz 120.0 s	Confirmed
					52.2 Hz 0.98 s	Confirmed

Note. For frequency trip tests the frequency required to trip is the setting \pm 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection – Voltage tests: These tests should be carried out in accordance with EN 50438 Annex D.2.3 and the notes in EREC G98/NI Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous)

Function	Setting		Trip test	Trip test		,,
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V stage 1	195.5 V	3 s	195.94V	3.043s	199.5 V 5.0 s	Confirmed
U/V stage 2	138 V	2 s	138.15V	2.044s	142 V 2.5 s	Confirmed
					134 V 1.98 s	Confirmed
O/V	253V	0.5 s	254.45V	0.545s	249 V 5.0 s	Confirmed
					257 V 0.45 s	Confirmed

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

@BCL@28089884.doc

MATERIALS & SAFETY - R&D

TR 31318

page 15 of 18

Protection - Lo	oss of Main	s test: For	PV Inverter s	s shall be te	ested in acco	ordance with
BS EN 62116.	Other Inver t	ters should	be tested in	accordance	e with EN 5	0438 Annex
D.2.5 at 10%, 5						
To be carried out a			ith a tolerance			Power levels.
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Limit is 0.5 seconds	Gupuony	Cupuoliy	Cupuoity	Cupuoliy	Cupuoity	Cupusity
For Multi phase	Micro-gene	rators confir	m that the	device shuts	down corre	ctly after the
removal of a sing	_					
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph1						
fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on	95% of	95% of	95% of	105% of	105% of	105% of
islanded network	Registered Capacity	Registered Capacity	Registered Capacity	Registered Capacity	Registered Capacity	Registered Capacity
Trip time. Ph2						
fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on	95% of	95% of	95% of	105% of	105% of	105% of
islanded network	Registered Capacity	Registered Capacity	Registered Capacity	Registered Capacity	Registered Capacity	Registered Capacity
Trip time. Ph3						
fuse removed						
Note for technologestablishing that th	e trip occurred nologies.	d in less than (0.5 s. Maximui	m shut down t		efore be up t
Indicate additiona	al shut down t	ime included	in above resu	ults.		m
For Inverters tes following table.	sted to BS EN	N 62116 the	following sub	set of tests	should be re	corded in the
Test Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip Time. Limit is 0.5s	186.4 ms	163.6 ms	404.7 ms	208.4 ms	169.9 ms	418.7 ms

@BCL@28089884.doc

MATERIALS & SAFETY - R&D

TR 31318

page 16 of 18

Protection – Frequency change, Vector Shift Stability test: This test should be carried out in accordance with EREC G98/NI Annex A1 A.1.2.6 (Inverter connected) or Annex A2 A.2.2.6 (Synchronous).

, ,	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49.5Hz	+50 degrees	Confirmed
Negative Vector Shift	50.5Hz	-50 degrees	Confirmed

Protection – Frequency change, RoCoF Stability test: The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous).

Ramp range	Test frequency ramp:	Test Duration	Confirm no trip
49.0 Hz to 51.0Hz	+0.95 Hzs ⁻¹	2.1 s	Confirmed
51.0 Hz to 49.0Hz	-0.95 Hzs ⁻¹	2.1 s	Confirmed

Limited Frequency Sensitive Mode – Overfrequency test: This test should be carried out in accordance with EN 50438 Annex D.3.3 Power response to overfrequency. The test should be carried out using the specific threshold frequency of 50.2 Hz and **Droop** of 4%.

Test sequence at Registered Capacity >80%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	3021W	50.00Hz		
Step b) 50.25 Hz ±0.05 Hz	2986W	50.25Hz		
Step c) 50.70 Hz ±0.10 Hz	2293W	50.70Hz		
Step d) 51.15 Hz ±0.05 Hz	1603W	51.15Hz	3.2kW	50%/Hz
Step e) 50.70 Hz ±0.10 Hz	2292W	50.70Hz		
Step f) 50.25 Hz ±0.05 Hz	2987W	50.25Hz		
Step g) 50.00 Hz ±0.01 Hz	3024W	50.00Hz		
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	1520W	50.00Hz		
Step b) 50.25 Hz ±0.05 Hz	1459W	50.25Hz]	
Step c) 50.70 Hz ±0.10 Hz	1119W	50.70Hz]	
Step d) 51.15 Hz ±0.05 Hz	782W	51.15Hz	1.6kW	50%/Hz
Step e) 50.70 Hz ±0.10 Hz	1120W	50.70Hz	1	
Step f) 50.25 Hz ±0.05 Hz	1460W	50.25Hz	1	
Step g) 50.00 Hz ±0.01 Hz	1520W	50.00Hz	1	
Steps as defined in EN 5043	8	•	•	•

@BCL@28089884.doc

MATERIALS & SAFETY - R&D

TR 31318

page 17 of 18

Power output with	falling frequency	test: This tes	t should be carried out in					
accordance with EN 50438 Annex D.3.2 active power feed-in at under-frequency and								
under steady state cor	nditions.							
Test sequence	Measured Active	Frequency	Primary power source					
	Power Output							
Test a) 50 Hz ± 0.01 Hz	3000W	50Hz	3.3kW					
Test b) Point between	3000W	49.55Hz	3.3kW					
49.5 Hz and 49.6 Hz								
Test c) Point between	3000W	47.55Hz	3.3kW					
47.5 Hz and 47.6 Hz								
NOTE: The operating point	t in Test (b) and (c) shall b	e maintained for a	at least 5 minutes					

Re-connection timer.						
Test should	Test should prove that the reconnection sequence starts after a minimum delay of 60 s for					
restoration o	f voltage and f	requency to	within the stag	e 1 settings of	Table 2.	
Time delay	Measured				en voltage or fre	
setting	delay		brought to just	outside stage 1	limits of table 2.	
60.0s	93.2s	At 257.0 V At 191.5 V At 47.9 Hz At 52.1 Hz				
Confirmation that the Micro-generator			Confirmed	Confirmed	Confirmed	Confirmed
does not re-co	does not re-connect.					

Fault level contribution: These tests shall be carried out in accordance with EREC						
G98 Annex A1 A.1.3.5 (Inverter connected) and Annex A2 A.2.3.4 (Synchronous).						
For machines with electro-ma	gnetic output		For Inverter	output		
Parameter	Symbol	Value	Time after fault	Volts	Amps	
Peak Short Circuit current	i		20ms	4.24	49.4	
Initial Value of aperiodic current	А		100ms	3.6	22.4	
Initial symmetrical short- circuit current*	<i>I</i> _k		250ms	3.43	14.3	
Decaying (aperiodic) component of short circuit current*	i _{DC}		500ms	3.4	10.3	
Reactance/Resistance Ratio of source*	X/ _R		Time to trip	0.110	In seconds	

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

^{*} Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

Logic Interface.	Yes
Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98/NI Annex A1 A.1.3.6 (Inverter connected).	NA
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	

@BCL@28089884.doc

MATERIALS & SAFETY - R&D

ENA Engineering Recommendation G98/NIIssue 1 – 2019

page 18 of 18

Additional comments		

TR 31318

@BCL@28089884.doc